PUBLICATION
StreamMyRelevance! Prediction of Result Relevance from Real-Time Interactions and its Application to Hotel Search
Type
Conference Paper
Year
2014
Authors
Sebastian Nuck
Andreas Both
Research Area
Event
14th International Conference on Web Engineering
Published in
Proceedings of 14th International Conference on Web Engineering (ICWE2014)
ISBN/ISSN
978-3-319-08244-8
Download
Abstract
The prime aspect of quality for search-driven web applications is to provide users with the best possible results for a given query. Thus, it is necessary to predict the relevance of results a priori. Current solutions mostly engage clicks on results for respective predictions, but research has shown that it is highly beneficial to also consider additional features of user interaction. Nowadays, such interactions are produced in steadily growing amounts by internet users. Processing these amounts calls for streaming-based approaches and incrementally updateable relevance models. We present StreamMyRelevance!--a novel streaming-based system for ensuring quality of ranking in search engines. Our approach provides a complete pipeline from collecting interactions in real-time to processing them incrementally on the server side. We conducted a large-scale evaluation with real-world data from the hotel search domain. Results show that our system yields predictions as good as those of competing state-of-the-art systems, but by design of the underlying framework at higher efficiency, robustness, and scalability.
Reference
Speicher, Maximilian; Nuck, Sebastian; Both, Andreas; Gaedke, Martin: StreamMyRelevance! Prediction of Result Relevance from Real-Time Interactions and its Application to Hotel Search. Proceedings of 14th International Conference on Web Engineering (ICWE2014), pp. 272-289, 2014.